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Byte-addressable storage (BAS), such as persistent memory and CXL-SSDs, does not meet system designers’ expectations

for data lushing and access granularity. Persistent CPU caches, enabled by recent techniques like Intel’s eADR and CXL’s

Global Persistent Flush, can mitigate these issues without sacriicing consistency. However, the shared nature of CPU caches

can lead to cache contention, which can result in cached data being frequently evicted to the BAS and reloaded into caches,

negating the beneits of caching. If the BAS write granularity is larger than the cacheline eviction granularity, this can also

lead to severe write ampliication.

In this paper, we identify, characterize, and propose solutions to the problem of contention in persistent CPU caches,

which is largely overlooked by existing systems. These systems either simply assume that cached data is hot enough to

survive cache evictions or use unsupported cache allocation techniques without testing their efectiveness. We also present

FusionFS, a contention-resilient kernel ile system that uses persistent CPU caches to redesign data update approaches.

FusionFS employs an adaptive data update approach that chooses the most efective mechanism based on ile access patterns

during system calls and memory mapping accesses, minimizing BAS media writes and improving throughput. FusionFS also

employs contention-aware cache allocation to minimize various types of cache contention. Experimental results show that

FusionFS outperforms existing ile systems and efectively mitigates various types of cache contention.

CCS Concepts: · Hardware → Non-volatile memory; Memory and dense storage; · Software and its engineering →

File systems management.

Additional Key Words and Phrases: Persistent memory, non-volatile memory, ile system, CPU cache

1 Introduction

Byte-addressable storage (BAS), such as Intel Optane PM [28] and Compute Express Link (CXL)-SSDs [49, 59],

combines the byte addressability of DRAM with the durability of disk storage, enabling system designs with

high throughput and low persistence overhead. However, commercially available BAS products do not meet the

Extension of Conference Paper [9]. In this new manuscript, (1) we identify, characterize, and propose solutions to several types of cache

contention that are largely overlooked by existing systems and can ofset the beneits of persistent CPU caches. (2) Following our proposed

guidelines, we introduce contention-aware cache allocation to mitigate various types of cache contention in the kernel space. (3) We extend

adaptive data update with L3_CAT-based dedicated-cache update and a hotspot detector that automatically limits hot data within the dedicated

cache capacity. (4) We add experiments to demonstrate that FusionFS is resilient to cache contention. (5) We discuss the generality of our

work and compare it to related work.
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Fig. 1. Maximum L3 cache sizes in recent processor generations.

expectations of system designers in terms of data lushing and access granularity [11, 38, 58]. Applications must

issue lush instructions and memory barriers on platforms with volatile CPU caches (e.g., ADR-based platforms)

to guarantee data persistence. This results in prolonged critical path latency and high consumption of limited

BAS write bandwidth. Moreover, BAS often has a large access granularity (e.g., 256B for Optane PM [58] and

16KB for CXL-SSDs [59, 65]) that mismatches with CPU caches’ cacheline access granularity (64B), causing small

random writes to trigger additional read-modify-write traic.

Existing systems often adopt expensive data update approaches to overcome these limitations. These ap-

proaches are mainly based on three types of mechanisms: 1) active-lush update eagerly persists data syn-

chronously with lush instructions and memory barriers [15, 45, 56, 57], 2) non-temporal update writes data to

BAS directly bypassing CPU caches [13, 35], 3) asynchronous update bufers data in DRAM and persists updates

asynchronously [14, 19, 45, 67, 68]. Synchronous updates, including active-lush update and non-temporal update,

lead to high data persistence overhead on the critical path and write ampliication for accesses with mismatched

granularity, while asynchronous update cannot guarantee immediate data consistency.

Fortunately, recent cache persistence techniques (e.g., Intel’s eADR [27], battery-backed cache [1], CXL’s

Global Persistent Flush [10]) enable automatic data lushing from CPU caches to BAS during power failures. In

addition, CPU L3 caches are large and have grown rapidly in recent years, as shown in Fig. 1. By leveraging

persistent CPU caches, data update mechanisms originally designed for volatile data structures can be applied to

update persistent data. These mechanisms include: 1) dedicated-cache update allocates a dedicated cache space

within persistent CPU caches for BAS systems [70], 2) in-place update does not explicitly issue lush instructions

after writes [33, 46, 60, 63].

Despite these advances, CPU caches are shared by BAS, DRAM, and I/O devices [26] and have limited cache

ways, leading to cache contention that can ofset or even reverse the beneits of persistent CPU caches. Cache

contention can be divided into two main categories: internal contention and external contention. Internal contention

occurs even when no other workloads are running and includes: 1) BAS-BAS contention, which occurs when the

BAS working set size (WSS) exceeds the cache capacity [33, 63, 70], 2) DRAM-BAS contention, which occurs when

the DRAM accesses of the BAS systems evict cached BAS data, 3) set contention, which occurs in set-associative

caches when multiple memory accesses compete for the same cache set, resulting in cache evictions even when

the cache isn’t full. External contention occurs when other workloads are running alongside the BAS system and

includes: 4) interfering process contention, which refers to the competition for cache space between BAS systems

and other unrelated interfering processes, and 5) I/O contention, which occurs when I/O devices compete with

BAS systems for cache space.

ACM Trans. Arch. Code Optim.
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Table 1. Efectiveness of BAS Systems’ Cache Contention Mitigation Techniques

Kernel Space

Support
Internal External

BAS-BAS DRAM-BAS Set Interfering Process I/O

Remove All Flush [46, 60] ✓ ✗ ✗ ✗ ✗ ✗

Flush Cold Data [33, 63] ✓ ✓ ✗ ✗ ✗ ✗

Cache Pseudo-Locking [24, 70] ✗ ✗ ✗ ✗ ✗ ✗

Naive L3_CAT [31] ✗ ✗ ✗ ✗ ✓ ✗

FusionFS ✓ ✓ ✓ ✓ ✓ ✓

However, existing BAS systems, including those based on cache persistence techniques, fail to fully harness the

potential of persistent CPU caches. For data updates, systems with volatile caches use active-lush/non-temporal

update to ensure consistency. On platforms with persistent caches, ile systems completely switch to in-place

update to avoid persistence overhead [60]. Such a ixed approach can lead to BAS-BAS contention due to the

large BAS WSS of the system. Moreover, existing systems are inefective at mitigating contention types other

than BAS-BAS contention, as shown in Table 1. This results in cached data being frequently evicted to BAS and

reloaded into caches, negating the beneits of caching. Worse yet, if the write granularity of BAS is larger than the

cacheline eviction granularity, it can lead to severe write ampliication, as writes larger than a cacheline may be

split into multiple cacheline-sized random writes due to the cacheline eviction policy (e.g., LRU algorithm) [18].

In this paper, we identify, characterize, and propose solutions to several types of cache contention that remain

challenging for existing systems. We then propose FusionFS, a contention-resilient kernel ile system that

harnesses persistent CPU caches to optimize data updates. The key observation is that diferent data update

mechanisms have their own applicable ile access patterns. Therefore, FusionFS uses an adaptive data update

approach to dynamically select the most appropriate data update mechanism based on ile access patterns (e.g.,

data hotness, update size, and consistency requirements). Writes to large (≥ 4KB) hot data and small (≤ 64B)

cold data are stored in persistent CPU caches to improve throughput and reduce BAS bandwidth consumption.

For memory mapping accesses, FusionFS omits lush instructions for hot data during synchronization calls (e.g.,

msync) to minimize writes to BAS. For hot data with relaxed consistency, FusionFS bufers writes to DRAM and

persists them during synchronization calls. Remaining writes go directly to BAS so that neighboring cacheline

evictions can be aggregated in its internal bufer. FusionFS uses a scalable 2Q-LRU approach to transparently

measure data hotness. For memory mapping accesses that bypass the ile system to access BAS directly, FusionFS

adopts a page fault-based proiling approach where data page permissions are periodically adjusted to catch the

next access and add it to the appropriate queue.

FusionFS uses a contention-aware cache allocation approach to mitigate various types of cache contention.

FusionFS oloads dedicated-cache updates to L3_CAT-protected kernel threads to mitigate DRAM-BAS contention

and support L3_CAT in kernel space. To mitigate set contention, FusionFS leaves some headroom in dedicated

caches. In addition, FusionFS spreads ile data across kernel threads of diferent NUMA nodes to utilize CPU

caches from multiple nodes, and preferentially allocates caches not used by DCA to avoid I/O contention.

In summary, the contributions of this paper include:

• We perform an in-depth analysis of the impact of persistent CPU caches on BAS, highlighting their potential

in optimizing the data update approaches of existing systems.

• We identify, characterize, and propose solutions to several types of cache contention that are largely

overlooked by existing systems and can ofset the beneits of persistent CPU caches.

• We propose FusionFS, a kernel ile system that integrates adaptive data update and contention-aware cache

allocation to improve throughput and reduce BAS bandwidth consumption.

ACM Trans. Arch. Code Optim.
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• We implement FusionFS as a POSIX-compliant kernel ile system for Linux. Performance results show that

FusionFS outperforms existing ile systems and efectively mitigates various types of cache contention. The

source code of FusionFS is publicly available at https://github.com/SJTU-DDST/FusionFS.

2 Background and Motivation

2.1 Impact of Persistent CPU Caches on BAS

Byte-addressable storage (BAS) ofers many attractive features that are changing the design of storage systems,

including ile systems, databases and key-value stores. It can be accessed by the CPU in a DRAM-like byte-

addressable manner, but has lower bandwidth and higher latency. It also ofers disk-like endurance and large

capacity. There are several types of BAS, such as Intel’s Optane PM [28] and CXL-SSDs [49, 59]. Apart from these

fundamental features, we highlight two other observations on platforms with persistent CPU caches that prevent

existing systems from fully leveraging BAS performance.

Observation 1: Access pattern determines how lush operations afect performance. On platforms

with volatile CPU caches (e.g., ADR-based platforms [21]), it is necessary to proactively lush data into BAS or

bypass CPU caches (e.g., clwb and ntstore) and use memory barriers to guarantee data persistence. Recent

cache persistence techniques allow automatic lushing of data from CPU caches to the BAS during power failures.

By omitting lush instructions, writes to the hot BAS region can be absorbed by CPU caches, efectively reducing

BAS bandwidth consumption without compromising data consistency.

However, simply removing the lush instructions does not fully exploit the potential of persistent CPU caches

because the BAS WSS can exceed the cache capacity, so cached data is often evicted to the BAS and reloaded

into caches. In addition, CPU caches are shared by BAS, DRAM and I/O devices [26], further exacerbating cache

contention. In contrast, explicitly issuing lush instructions for cold data not only allows BAS to aggregate large

sequential writes to the cold region in its internal bufer [58], but also reduces BAS WSS.

Consequently, with the presence of persistent CPU caches, applications gain the lexibility to decide whether

to use lush instructions based on access patterns.

Observation 2: Data access granularity afects BAS bandwidth consumption. The BAS often has a

large access granularity (e.g., 256B for Optane PM [58] and 16KB for CXL-SSDs [59, 65]) that does not match the

access granularity of CPU caches (64B). We refer to these access granularity blocks as XPLine. This mismatch

makes small random writes to the BAS ineicient because they are converted to accesses with access granularity,

resulting in write ampliication [58]. Therefore, accessing the BAS with blocks matched to its access granularity

can maximize the use of BAS bandwidth. In addition, persistent CPU caches allow multiple small writes to be

aggregated before being written to BAS, efectively mitigating write ampliication.

As a result, the two observations that hinder systems from fully harnessing BAS performance can be mitigated

through the use of persistent CPU caches.

2.2 Data Update Approaches

With the introduction of persistent CPU caches, mechanisms originally designed for updating volatile data can

now be repurposed for updating persistent data. Fig. 2 shows ive existing data update mechanisms.

Dedicated-Cache Update. Dedicated-cache update allocates a dedicated cache space within persistent CPU

caches for BAS systems using cache allocation technologies (e.g., Intel’s Cache Allocation Technology [20],

AMD’s Platform Quality of Service [2], and ARM’s Memory Partitioning and Monitoring [4]) [70]. This reduces

BAS bandwidth usage by mitigating cache contention, and cached data is automatically persisted to BAS during

a power outage.

Cache allocation technologies include two related features: Cache Pseudo-Locking and L3_CAT. Cache Pseudo-

Locking [24], supported only by Intel, is not architecturally supported after the Broadwell generation released

ACM Trans. Arch. Code Optim.
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Fig. 2. BAS Data update mechanisms.

in 2014 [22, 23]. L3_CAT supports recent CPUs of various brands (e.g., Intel CPUs since Xeon E5 v3 [31], AMD

CPUs since EPYC Rome [44], and ARM CPUs [5]) through Linux’s resctrl interface [25], but has diferent

characteristics. To our knowledge, no other BAS system has used L3_CAT to mitigate cache contention.

Unlike Cache Pseudo-Locking, which locks memory segments in the caches, L3_CAT allocates a portion of the

caches to L3_CAT groups that contain speciic PIDs or CPU cores. Processes can only allocate cachelines to their

assigned LLC ways, but can still load/update cachelines from all LLC ways. Programmers can take advantage of

L3_CAT by simply accessing the appropriate Model-Speciic Registers (MSRs) or using high-level libraries [31].

Furthermore, dynamic mechanisms can be built on top of it [61].

However, L3_CAT can only isolate cache usage from other processes and does not completely avoid cache

contention. In addition, due to ID-based allocation, L3_CAT cannot directly afect kernel-level operations. This

is because system calls run on the CPU core that initiates the call, which is not ixed, and they do not belong

to any PID. A workaround is to use L3_CAT to protect all processes that initiate system calls, but this greatly

expands the system’s WSS by including the WSS of all writer processes, potentially exceeding cache capacity.

Dedicated-cache update is suitable for updating hot data when there are concurrent interfering processes, but its

efectiveness for kernel and other types of cache contention remains to be addressed.

In-Place Update. In-place update omits issue lush instructions after writes, as these operations are no longer

needed to ensure consistency with cache persistence techniques. This mechanism minimizes update latency by

reducing synchronous data persistence overhead [33, 46, 60, 63]. The bandwidth consumption of this mechanism

varies depending on the access pattern. On the one hand, when updating hot data, it uses CPU caches to bufer

multiple writes to the same XPLine (Step 1 in Fig. 2). On the other hand, for cold data exceeding one cacheline

(> 64B), it can result in write ampliication due to the cacheline eviction policy (Step 2 in Fig. 2). Worse, it is

susceptible to interference from ofending applications that frequently request large amounts of data but rarely

reuse the cached data, such as ile hosting and video streaming programs [20]. In-place update is suitable for

updating small (≤ 64B) cold data, as well as for updating hot data when there are no interfering processes.

Active-Flush Update. Active-lush update explicitly issues lush instructions after writes to proactively lush

data into BAS, coupled with memory barriers for immediate data persistence. It is a widely adopted mechanism in

ADR-based systems [15, 45, 56, 57] to ensure consistency. Although lushing becomes unnecessary for consistency,

active-lush update prevents random cacheline eviction by aggregating large writes in the internal bufer and
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writing them to BAS sequentially, mitigating write ampliication. However, it cannot alleviate write ampliication

if the access size is within a cacheline (Step 3 in Fig. 2). Active-lush update is suitable for updating cold data with

more than one cacheline (> 64B).

Non-Temporal Update. Non-temporal update directly writes data to BAS, bypassing CPU caches using

non-temporal write instructions. Like active-lush update, it is widely used by ADR-based systems [13, 35] to

ensure data consistency. Compared to active-lush update, it exhibits lower latency and higher bandwidth by

avoiding loading data into CPU caches [58]. Non-temporal update is suitable for updating cold data with more than

one cacheline (> 64B).

Asynchronous Update. Asynchronous update bufers writes in DRAM and persists them asynchronously.

This mechanism efectively reduces critical path latency and BAS bandwidth usage, but also introduces the risk of

data loss during power failures [45, 55, 67, 68]. To obtain immediate persistence in ile system access, applications

must explicitly call fsync() to synchronously persist previously bufered writes to BAS. Asynchronous update is

only suitable for scenarios with relaxed consistency requirements.

These update mechanisms provide diferent choices for updating data in BAS, and their efectiveness depends

on the access pattern. To optimize performance, it is essential to dynamically choose the most suitable mechanism

according to the access pattern. However, current BAS systems do not adaptively determine the appropriate data

update mechanism according to the access pattern, instead adhering to a rigid approach.

3 Characterization of BAS-related Cache Contention

In this section, we speciically identify and characterize several types of cache contention that remain challenging

for existing BAS systems to mitigate, including DRAM-BAS contention (Section 3.1), set contention (Section 3.2),

interfering process contention (Section 3.3), and I/O contention (Section 3.4). Such contention 1) causes cached

data to be frequently evicted to BAS and reloaded into caches, negating the beneits of caching, and 2) can lead

to write ampliication if the write granularity of the BAS is large. Despite its importance, the issue of cache

contention has been largely overlooked in existing BAS systems. Therefore, we present a set of guidelines aimed

at mitigating each type of contention.

3.1 DRAM-BAS Contention

DRAM-BAS contention occurs when the combined cache requirements of a BAS system’s DRAM and BAS exceed

the available cache capacity, resulting in competition for cache resources. Some BAS systems lush cold data

to limit BAS WSS to prevent BAS-BAS contention [33, 63], but the systems’ DRAM accesses can also compete

for cache space. To understand the efects of DRAM-BAS contention, we perform an experiment on the platform

described in Section 5.1. In the experiment, the process simultaneously overwrites both a BAS bufer of the

same size as the allocated caches and a DRAM bufer of variable size. The BAS bufer is allocated via memory

mapping on the ext4-DAX ile system. We monitor results using perf for cache miss rates and ipmctl for BAS

media writes. L3_CAT with lush is used as the baseline for I/O ampliication. Test results are consistent for both

sequential and random access patterns and for 32B/4KB access sizes.

Our results, shown in Fig. 3, show a direct correlation between the DRAM bufer size and the increase in I/O

ampliication. Speciically, when the DRAM bufer size reaches 7MB, I/O ampliication is about 1, meaning that

BAS writes catch up with the bandwidth to lush all writes. The results highlight a critical challenge for BAS

systems: they often store recoverable metadata in DRAM to speed up accesses, but as the metadata grows, DRAM

accesses can often evict cached BAS data. In addition, using L3_CAT to isolate kernel ile systems by protecting

all processes that initiate system calls becomes impractical due to the DRAM accesses of these processes. Instead,

proactively calling lush instructions after DRAM accesses (active-lush update) or using ntstore to access DRAM

(non-temporal update) can efectively limit DRAMWSS and thus mitigate DRAM-BAS contention.

ACM Trans. Arch. Code Optim.
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Fig. 3. Cache miss rates and I/O amplification when the process overwrites a BAS bufer of the same size as the allocated

caches (21MB) and a DRAM bufer of variable size.

Fig. 4. Cache miss rates and I/O amplification when the process writes to a BAS bufer of variable size for various L3_CAT

configurations.

Guideline 1: BAS systems can use active-flush/non-temporal updates for DRAM accesses to minimize

the eviction of cached BAS data caused by DRAM accesses.

3.2 Set Contention

Set contention occurs in set-associative caches when multiple memory accesses compete for the same cache set,

resulting in cache evictions even when the cache isn’t full. In modern CPUs, the L3 caches are segmented into

numerous sets, with each set consisting of multiple ways. For example, Intel Xeon Gold 6348 equipped on our

platform has 57,344 sets with 12 ways per set [29]. One cache way corresponds to one twelfth of the L3 caches,

or 3.5MB caches. Physical addresses are mapped to free ways in the corresponding set using a hash function.

This architecture is intended to speed up cache access, but severely limits the number of ways per set, which can

lead to set contention as the WSS approaches cache capacity. Set contention exists even without L3_CAT, and is

exacerbated in L3_CAT-protected systems because L3_CAT imposes an additional limit on the number of cache

ways the system can access.

We design an experiment to evaluate the impact of set contention on BAS systems. Speciically, we allocate

either 10 cache ways (35MB) or 2 cache ways (7MB) of cache to the process. This setup allows us to highlight

the increased severity of set contention when fewer cache ways are available. The process then overwrites a

variable-sized BAS bufer. Our results, shown in Fig. 4, show that the cache miss rate remains low as long as the

size of the cached data is smaller than the allocated cache size by at least one cache way (3.5MB). However, as the

ACM Trans. Arch. Code Optim.
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Fig. 5. Cache miss rates and I/O amplification when the BAS system process overwrites a BAS bufer and various numbers

of interfering processes overwrite private DRAM bufers under diferent cache contention mitigation approaches.

available cache ways continue to decrease and there is less than one cache way available, the cache miss rate

begins to increase, indicating increased set contention. This contention increases as the available cache capacity

decreases. Fig. 4(b) shows that when only two cache ways are allocated and the size of the cached data is equal to

the allocated cache size, BAS writes can reach half the bandwidth to lush all writes.

Another of our indings is that using devdax mode to allocate BAS bufers can reduce BAS writes caused by

set contention by approximately 50%. This signiicant reduction is due to devdax’s ability to provide more raw

access to BAS, making it easier for an application to guarantee alignment for large pages. This inding is crucial

because set contention can be exacerbated by an unfavorable access pattern to the cache’s hash function, leading

to an imbalance in set utilization [16, 50].

Guideline 2: BAS systems can mitigate set contention by reserving at least one cache way in the

dedicated cache, or by using devdaxmode to balance set usage.

3.3 Interfering Process Contention

Interfering process contention refers to the competition for cache space between BAS systems and other interfering

processes unrelated to BAS. Early systems based on persistent CPU caches [46, 60] omit lush instructions after

writes without considering that interfering processes may evict cached BAS data. Recent systems [33, 63, 70]

attempt to address this by lushing cold data and assuming that cached data is hot enough to survive cache

contention. However, cache eviction strategies on Intel CPUs are undocumented and not simply hotness-based [8],

and it is diicult to guarantee that cached BAS data is hotter than data from other processes. The deprecated

Cache Pseudo-Locking and its successor L3_CAT are intended to reserve cache space for BAS systems, but their

efectiveness remains to be tested.

We conduct an experiment to evaluate the impact of interfering process contention on BAS systems. In our tests,

the BAS system process overwrites a BAS bufer 100 times, while multiple interfering processes overwrite their

100MB private DRAM bufers. The BAS bufer size is set to match the maximum available cache size. For lushing

cold data, this is the entire cache size (42MB). Otherwise, it is 11 of the 12 cache ways (38.5MB), since we must

reserve at least one cache way (3.5MB) for other processes. This setup is designed to allow the BAS system to get

the most out of the cache space while simulating a situation where the BAS data is hotter than the DRAM data

due to the smaller BAS data.

As shown in Fig. 5, our results indicate that neither lushing cold data nor using Cache Pseudo-Locking

efectively mitigates cache contention. Flushing cold data can reduce BAS writes in the absence of interfering

processes, but even a single interfering process can signiicantly increase BAS writes, even exceeding the value

ACM Trans. Arch. Code Optim.
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Fig. 6. Cache miss rates and I/O amplification when the BAS system process writes to a 3.5MB BAS bufer with 7MB of

diferent cache ways allocated.

when hot data is also lushed. Conversely, the deprecated Cache Pseudo-Locking tends to increase BAS writes

even in the absence of interfering processes. As for L3_CAT, cache miss rates and I/O ampliication are not

signiicantly afected by interfering processes, but have a non-zero lower bound due to set contention.

Guideline 3: BAS systems should use L3_CAT rather than unsupported Cache Pseodo-Locking to

isolate cached BAS data from cached DRAM data of interfering processes.

3.4 I/O Contention

I/O contention occurs when I/O devices compete with BAS systems for cache space, causing cache evictions even

when cache is allocated to BAS systems with L3_CAT. This contention is caused by Direct Cache Access (DCA)

technologies, such as Intel’s Data Direct I/O (DDIO) [32] and ARM’s Cache Stashing [6], which allow I/O devices

to inject incoming I/O traic directly into CPU caches instead of memory. In this paper, we focus on Intel’s DDIO

because it is the most widely used DCA technology. By default, DDIO can only allocate on the two leftmost LLC

ways1 [61] (i.e., the shareable ways), while it can update or read data from all ways. For DRAM systems, DDIO

can improve system performance by reducing memory access latency and memory bandwidth consumption [54].

However, it inevitably evicts cachelines when caches are full and causes write ampliication for BAS systems.

Here we categorize I/O contention into two types, 1) intra-I/O contention: multiple I/O requests compete for cache

space in systems that access BAS with I/O devices (e.g., RDMA NICs [54], DMA engines [41]), and 2) system-I/O

contention: BAS systems that do not use I/O devices compete for cache space with concurrent I/O requests.

We evaluate the impact of system-I/O contention through experiments since we focus on monolithic systems.

Speciically, we allocate 7MB of cache to the BAS system process, which overwrites a 3.5MB BAS bufer, while

simultaneously performing DDIO-enabled DMA requests to write DRAM data on the same NUMA node. Our

results, shown in Fig. 6, indicate that allocating the shareable ways to the BAS system process signiicantly

increases BAS writes, approaching the bandwidth to lush all data. In contrast, allocating other non-shareable

ways results in near-zero cache miss rates and BAS writes. This inding suggests that even when cache ways

are made exclusive to BAS systems using L3_CAT, there is still I/O contention if the assigned ways overlap with

shareable ways. Fortunately, L3_CAT can still be used to prohibit BAS systems from allocating cachelines in

shareable ways to prevent I/O contention.

A common approach in BAS systems is to disable DDIO for BAS-related I/O devices, which also persists data

on platforms with volatile CPU caches. However, disabling DDIO is inefective for system-I/O contention and

1This value is deined in a Model Speciic Register (MSR) called "IIO LLC WAYS" at address 0xC8B and can be read/written using msr-tools

(e.g., rdmsr and wrmsr).
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Fig. 7. Update policy of FusionFS.

platforms with persistent CPU caches. On the one hand, if DDIO is disabled, incoming data will still be in the

cache initially and will be lushed to memory immediately, potentially evicting cached BAS data when the cache

is full [61]. On the other hand, on platforms since Ice Lake, all DDIO-related registers are read-only [47]. Some

vendors ofer a workaround to globally disable DDIO by disabling Intel Virtualization Technology (Intel VT) in

the BIOS. However, this workaround has signiicant drawbacks: 1) it severely degrades I/O performance when

accessing DRAM, 2) it disables other virtualization features, potentially impacting system functionality, and 3)

not all vendors support this option. As a result, simply disabling DDIO is an impractical solution for mitigating

system-I/O contention or adapting to modern platforms.

Guideline 4: When DCA is enabled, BAS systems should use L3_CAT to avoid using shareable ways.

4 Design and Implementation

In this section, we introduce FusionFS, a contention-resilient kernel ile system that exploits persistent CPU

caches to redesign data update approaches. We propose an adaptive data update approach to select the optimal

data update mechanism from the ive update mechanisms based on access patterns (Section 4.1). Following our

guidelines, we propose a contention-aware cache allocation approach to prevent various types of cache contention

(Section 4.2).

4.1 Adaptive Data Update

In this section, we irst introduce the update policy of FusionFS during system call accesses (Section 4.1.1) and

memory mapping accesses (Section 4.1.2), as shown in Fig. 7. We then present the scalable 2Q-LRU and page

fault-based proiling approaches, which transparently measure data hotness even for memory mapping accesses

that bypass the ile system to access BAS directly (Section 4.1.3).

4.1.1 System Call Accesses. FusionFS selects the most suitable data update mechanism based on access patterns

during system call accesses (e.g., write). For large (≥ 4KB) hot data, FusionFS uses dedicated-cache update to

bufer writes in persistent CPU caches. This is especially efective for hot data that is likely to be accessed again

before eviction, reducing writes to BAS and leveraging the beneits of cache hits. In addition, dedicated-cache

update can protect these data segments from interfering process contention. For small (< 4KB) hot data, FusionFS

uses non-temporal update because it has higher bandwidth for I/O sizes less than 4KB. For hot data with relaxed

consistency, including recoverable data and data lagged as relaxed consistent by the user, FusionFS chooses
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asynchronous update to bufer writes in DRAM and persist them asynchronously, avoiding write ampliication

and leveraging DRAM’s high performance.

For small (≤ 64B) cold data, FusionFS uses in-place update to minimize the cost of explicit lush instructions,

since actively lushing a single cacheline will not mitigate write ampliication. Conversely, for large (> 64B) cold

data, FusionFS employs non-temporal update rather than active-lush update due to its lower latency and higher

bandwidth.

4.1.2 Memory Mapping Accesses. Memory-mapped ile support is critical because mmap is an important method

for accessing BAS that allows applications to achieve near-native BAS performance. While some BAS-aware

applications use lush instructions during mmap accesses, legacy applications still rely on synchronization calls

to lush data.

FusionFS extends support for the adaptive data update approach to memory-mapped iles. For hot data, FusionFS

uses in-place update by omitting lush instructions in synchronization calls to reduce writes to BAS. Dedicated-

cache updates cannot be used because memory-mapped data is accessed by userspace processes, not the ile

system. For cold data, FusionFS uses active-lush update to aggregate the sequential writes in BAS’s internal

bufer. For hot data with relaxed consistency, FusionFS uses asynchronous update by bufering data pages in

DRAM and persisting them to BAS during synchronization calls. Since applications often synchronize the entire

ile regardless of the mmap write area, if a strictly consistent ile has multiple full-ile sync calls within a second,

FusionFS will batch them into a single full-ile sync to further reduce overhead. This does not afect consistency

thanks to persistent CPU caches.

4.1.3 Hotspot Detector. We design a lightweight yet efective hotspot detector to measure the hotness of data

pages during system call and memory mapping accesses without requiring code changes to user applications.

Scalable 2Q-LRU. For system call accesses, we design a scalable 2Q-LRU algorithm tominimize cache thrashing.

The 2Q-LRU algorithm uses two queues, the recent queue and the frequent queue. Data pages enter the recent

queue on the irst access and move to the frequent queue on subsequent visits. The algorithm uses a read-write

semaphore to provide thread safety. Changes to the 2Q-LRU queues are cached in per-CPU bufers and bulked

into the queues until they are full. The size of identiied hot data is limited to avoid set contention.

Page fault-based proiling. For memory mapping accesses, obtaining access information transparently is

challenging because applications bypass the ile system to access BAS directly. To address this, FusionFS adopts a

page fault-based proiling approach. FusionFS periodically adjusts the permissions of data pages in a background

kernel thread. This allows the next access to be captured by the page fault handler function. The kernel thread

then performs a translation lookaside bufer (TLB) shootdown and sends inter-processor interrupts (IPIs) to

synchronize the TLB across all CPUs. Finally, FusionFS appends captured mmap accesses to appropriate 2Q-LRU

queues for hot data detection. This process is only triggered once per proiling period for each page, so the

overhead is negligible.

By dynamically selecting the most efective mechanism based on access patterns, FusionFS optimizes data

updates during system calls and memory mapping accesses. The adaptive approach of FusionFS ensures better

BAS bandwidth utilization and lower latency across various scenarios, addressing the limitations observed in

conventional approaches.

4.2 Contention-Aware Cache Allocation

Following our guidelines in Section 3, we propose isolated data access (Section 4.2.1), associativity-friendly data

layout (Section 4.2.2), and DCA-aware way allocation (Section 4.2.3) to address DRAM-BAS, set, and I/O contention,

respectively. These designs also make L3_CAT efective for kernel space and allow FusionFS to use CPU caches

of all NUMA nodes.
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4.2.1 Isolated Data Access. FusionFS addresses the challenges of DRAM-BAS contention and unsupported L3_CAT

in kernel space by oloading dedicated-cache updates to L3_CAT-protected kernel threads. Kernel threads are

actually processes cloned from process 0 (the swapper). Unlike system calls and user threads, kernel threads

not only have their own PIDs, which are required for L3_CAT, but also have access to both the kernel and user

address spaces [30, 48, 66, 71]. The unique feature of kernel threads allows them to copy data from user address

space bufers to BAS located in the kernel address space, while protecting the cached BAS data from being evicted

by other processes via L3_CAT, and isolating the kernel ile system’s BAS WSS from the system and calling

processes’ DRAMWSS.

FusionFS uses several methods to reduce the overhead of oloading dedicated-cache updates to kernel threads.

First, FusionFS assigns a ixed kernel thread to each BAS region according to the hash function of the address. This

ensures that the same BAS region is always accessed by the same kernel thread, reducing the cache coherence

overhead caused by multiple kernel threads on diferent CPU cores accessing the same BAS region. Second,

FusionFS allocates private ring bufers to kernel threads to improve scalability. Third, FusionFS uses oloaded

dedicated-cache updates only for large (≥ 4KB) hot data, since the overhead of oloading small data updates is

non-trivial according to the experimental results in Section 5.4. Finally, FusionFS performs the 2Q-LRU algorithm

outside of the kernel threads to reduce kernel thread access to DRAM, thus mitigating DRAM-BAS contention. We

also test a workaround that uses L3_CAT-protected kernel threads to load BAS data into dedicated CPU caches

on the irst access, and then perform subsequent accesses directly without oloading. However, we ind that after

non-oloaded accesses, the cached data is no longer protected by L3_CAT and is vulnerable to interfering process

contention.

4.2.2 Associativity-Friendly Data Layout. FusionFS leaves a one-way gap between theWSS and the cache capacity

to mitigate set contention. As mentioned in Section 3.2, using devdax mode to get more raw access can reduce set

contention. However, we also note that the kernel already provides raw access to BAS, so the physical addresses

of pages with contiguous kernel virtual addresses are also contiguous. Therefore, FusionFS can mitigate set

contention without relying on devdax, thus providing better support for other BAS devices such as CXL-SSDs.

Additionally, when FusionFS is mounted on multiple NUMA nodes, FusionFS spreads the ile data across the

kernel threads of diferent NUMA nodes in a RAID0-like fashion. This allows FusionFS to use the CPU caches of

other NUMA nodes by oloading dedicated-cache updates to kernel threads on those nodes, even if the processes

initiating the write calls are running on a single NUMA node. Because the data is copied from the local DRAM of

the initiating NUMA node to the CPU caches of the kernel threads on other NUMA nodes during write operations,

it does not sufer from BAS’s poor cross-NUMA access performance. With this optimization, FusionFS can use

the CPU caches of all NUMA nodes to extend the dedicated cache capacity.

4.2.3 DCA-Aware Way Allocation. FusionFS addresses the challenge of I/O contention caused by Direct Cache

Access (DCA) by preferentially allocating cache ways that are not used by DCA for isolated data accesses. This

approach ensures that incoming I/O traic that DCA allows to be injected directly into CPU caches will not evict

cached BAS data without disabling DCA. In fact, disabling DCA does not work on monolithic systems and is not

feasible for eADR platforms (Section 3.4). While other processes and I/O operations share the shareable ways,

they are less afected by I/O contention due to the higher bandwidth and matched access granularity of DRAM.

By mitigating DRAM-BAS, set, and I/O contention and making L3_CAT efective for kernel space, FusionFS

addresses the limitations of L3_CAT and ensures that the dedicated caches are used efectively. In addition,

FusionFS can use the CPU caches of all NUMA nodes, allowing more data to be stored in the caches. This further

reduces the need to access BAS, improving the overall performance of the ile system.
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5 Evaluation

In this section, we evaluate the performance of FusionFS and answer the following questions:

• Can FusionFS leverage the adaptive data update approach to optimize ile updates?

• Can FusionFS efectively mitigate various types of cache contention with contention-aware cache allocation?

• Can FusionFS exhibit optimal performance in application scenarios of system calls and memory mapping?

5.1 Evaluation Methodology

Experimental platform.We perform our evaluation on a server equipped with two 28-core Intel Xeon Gold

6348 (42MB cache), four 128GB Intel Optane PM, which is a type of BAS, and four 16GB DDR4 DRAM on each

node. The server is running Linux kernel v5.13.13.

FusionFS implementation and coniguration.We modify and extend the PMFS-based [15] ODINFS [71]

to design and implement FusionFS. ODINFS is a PM ile system that introduces a data movement delegation

mechanism used in non-PM systems [30, 48, 66], where background threads access PM on behalf of applications to

limit concurrent PM accesses and use the PM bandwidth of multiple NUMA nodes. As a result, FusionFS provides

the same level of consistency as PMFS and ODINFS, i.e. all metadata operations are synchronous and atomic, and

all data operations are synchronous but not atomic. Many applications that write to the ile system, such as SQLite

and LevelDB, ensure consistency through their own logging mechanisms and do not require the ile system to

provide atomicity for data updates. If needed, we can extend FusionFS to provide atomicity of data operations

using logging [33] or hardware transactional memory (HTM) [60, 63]. For a fair comparison, no asynchronous

updates are used. Unless otherwise mentioned, we conigure FusionFS to have 12 kernel threads and 21MB of

dedicated cache per NUMA node. FusionFS can also be extended with cache management mechanisms [61] to

dynamically adjust the dedicated cache capacity.

Target comparisons. We evaluate and compare FusionFS with ive ile systems: ext4, PMFS [15], NOVA [57],

WineFS [34], and ODINFS [71]. We conigure ext4 with the DAX option and all other ile systems with the

default setup. These ile systems provide weaker or the same level of consistency as FusionFS. Unless otherwise

mentioned, all ile systems run on a single NUMA node.

5.2 Micro-benchmarks

5.2.1 Fio. We evaluate the ile write performance of FusionFS using Fio [17], testing both 4KB and 2MB access

sizes with 1 and 8 threads. We vary the Zipf parameter � to present results with localities ranging from 90/10

(90% of accesses go to 10% of data) to 50/50 (uniform distribution). We conigure io to let each thread access a

16MB private ile.

Fig. 8 shows the throughput, average latency, and I/O ampliication of all ile systems evaluated. We report the

I/O ampliication as the number of bytes written to the underlying BAS media divided by the number of bytes

issued by the CPUs. For single-threaded 4K writes, FusionFS outperforms the throughput of other ile systems by

an average of 67.4%. FusionFS also shows near-zero latency and I/O ampliication because the single 16MB ile can

it into dedicated cache capacity. In contrast, other ile systems have higher latency and I/O ampliication around

1 because they lush every write to BAS. In particular, ODINFS has signiicantly lower throughput and higher

latency due to the communication overhead with kernel threads and the inability to use the BAS bandwidth of

multiple NUMA nodes when only one node is available, while FusionFS avoids the cache coherency overhead

and beneits from the high bandwidth of CPU caches. For single-threaded 2M writes, the average throughput

advantage for FusionFS increases to 343.3% because the oloading overhead for large writes is negligible.

For 8-threaded 4K writes, FusionFS’s performance metrics improve with increasing locality, with throughput

averaging 42.9% higher than the other ilesystems. This is because the size of the eight 16MB iles far exceeds the

dedicated cache capacity, and the higher locality brings a higher probability that the target data block is located
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Fig. 8. Throughput, latency, and I/O amplification of evaluated file systems in Fio.

Name Description

DRBL Each thread reads a private block in a private ile.

DRBM Each thread reads a private block in a shared ile.

DRBH Each thread reads a shared block in a shared ile.

DWOL Each thread overwrites a private block in a private ile.

DWOM Each thread writes to a private block in a shared ile.

Table 2. Summary of used FxMark workloads. Each thread repetitively performs the corresponding operations in each

workload.

in the CPU caches. For 8-threaded 2M writes, although large ile sizes and write sizes make random accesses

nearly uniformly distributed regardless of � , FusionFS throughput is still 33.2% higher on average due to the

higher bandwidth and lower latency of non-temporal updates compared to active-lush updates used by other ile

systems.

5.2.2 FxMark. We use the FxMark [43] workloads described in Table 2 to evaluate the performance and scalability

of FusionFS data operations. Fig. 9 shows the scalability results of the evaluated ile systems. Among them, PMFS

and NOVA can only scale the DRBL workload. Instead, FusionFS and ODINFS can scale all the benchmarks with

the readers-writer range lock [12]. For read workloads, FusionFS and ODINFS are 16.9% slower than PMFS in
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Fig. 9. Results of FxMark workloads.

Fig. 10. Breakdown analysis of FusionFS with Fio workloads as optimizations are gradually enabled.

DRBL. However, they outperform other ile systems by about 23.2× and 22.8× in DRBM and DRBH, respectively,

because other ile systems are limited by the readers-writer semaphore implementation in the Linux kernel.

For write workloads, FusionFS outperforms other ile systems by about 1.6× and 1.5× on average in DWOL

and DWOM, respectively. This is because in FusionFS, writing to hot data is likely to hit CPU caches, while in

other ile systems, throughput is limited by BAS bandwidth as they eagerly lush the written data to BAS or

use non-temporal write instructions to store data. Compared to ODINFS, which limits the number of BAS write

threads to no more than 8 to avoid performance collapse, FusionFS does not limit access to cached data and

achieves better scalability.

5.3 Breakdown Analysis

We use a Fio workload to investigate the throughput and I/O ampliication improvements of each of FusionFS’s

optimizations when updating cached data under cache contention. The workload performs 4KB I/Os on a 16MB

ile with a single thread. We also spawn 8 interfering processes and I/O requests as described in Section 3.

Fig. 10 shows the throughput and I/O ampliication for the tests. Removing all lushes results in a 13.7% decrease

in throughput and a 194.4% increase in I/O ampliication compared to lushing all data (i.e., PMFS). This is because

writes larger than a cacheline can be split into multiple cacheline-sized random writes due to the cacheline
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Fig. 11. Results of sensitivity analysis.

eviction policy, which does not match the access granularity of BAS. Cacheline evictions are further exacerbated

by BAS-BAS contention and interfering process contention, causing severe write ampliication.

When we start mitigating BAS-BAS contention with adaptive data update, throughput drops by 8.5% due to

persistence overhead. However, I/O ampliication even increase by 7.3% because cached data is still vulnerable to

interfering process contention. This suggests that adaptive data update alone is not efective in mitigating interfering

process contention because there is no guarantee that detected hot data is hotter than data from other processes.

Next, we oload dedicated-cache updates to L3_CAT-protected kernel threads to mitigate interfering process

contention. The isolated data access optimization allows FusionFS to outperform PMFS under cache contention,

with throughput increases of 127.2% and I/O ampliication reductions of 87.0%. The associativity-friendly data

layout does not signiicantly change the results because the addresses of the iles created by Fio in the freshly

initialized FusionFS are contiguous and the ile size is smaller than the dedicated cache capacity. Finally,DCA-aware

way allocation further mitigates I/O contention by preventing FusionFS from sharing caches with DCA-enabled

I/O operations, increasing throughput by 25.1% and reducing I/O ampliication by 95.2%.

In summary, combining all optimizations results in a throughput increase of 123.5% and a reduction in I/O

ampliication of 98.0%. This indicates that FusionFS’s cached data is virtually immune to various types of cache

contention and consumes near-zero BAS bandwidth when writing cached data due to contention-aware cache

allocation.

5.4 Sensitivity Analysis

This section describes how I/O size thresholds, kernel thread count, and NUMA node count afect FusionFS

performance.

FusionFS with varying I/O sizes.We run Fio workloads to evaluate the performance of diferent data update

mechanisms under diferent I/O sizes. We generate single-threaded uniform random write requests with diferent

I/O sizes ranging from 1KB to 64KB. We use a 16MB ile to simulate a scenario where BAS accesses can hit CPU

caches, and a 1GB ile to simulate a scenario where BAS accesses cannot hit CPU caches.

Fig. 11(a) shows the results. In-place updates that hit CPU caches have the best throughput at small I/O sizes

(≤ 64KB), and the throughput decreases as the I/O size increases. However, if they cannot hit CPU caches due to

cache contention, the throughput will be worst due to write ampliication caused by random cacheline evictions

and mismatched access granularities. Dedicated-cache updatesmitigate interfering process contention, but also incur
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Fig. 12. Results of application benchmarks.

communication overhead. By applying a variety of optimizations, they outperform other options under cache

contention for I/O sizes greater than or equal to 4KB. Unlike NOVA, which only uses non-temporal updates when

the platform does not support clflushopt and clwb, FusionFS prefers non-temporal updates for system calls

because they always have higher throughput than active-lush updates. For memory mapped cold data, FusionFS

lushes data already written to CPU caches into the BAS during synchronization calls, so only active-lush updates

can be used.

FusionFS with varying kernel threads.We run a multithreaded Fio workload with 4KB I/O size and 4KB ile

size and vary the number of kernel threads to ind the optimal number for FusionFS’s isolated data access, which

is a common practice for data copy oloading [36, 41, 71, 72]. As Fig. 11(b) shows, the throughput approaches

saturation at 12 kernel threads and continues to increase slightly up to 20 threads. However, beyond 12 threads,

the incremental gains in throughput are minimal compared to the increase in CPU usage. Therefore, we choose

12 kernel threads as the default setup for FusionFS because it balances throughput and CPU usage.

FusionFS with varying NUMA nodes. Fig. 11(c) shows FusionFS’s BAS media writes when running the

uniform random write Fio workload with diferent ile sizes on diferent numbers of NUMA nodes. When running

on two NUMA nodes, the BAS writes begin to increase with larger ile sizes. The results show that FusionFS can

use CPU caches on other NUMA nodes by binding kernel threads to them, even if the process that initiated the

write call is not on them.

5.5 Application Benchmarks

This section tests FusionFS in real-world application scenarios of system calls and memory mapping.

5.5.1 Filebench OLTP. Filebench [53] OLTP contains a single log writer process writing a 10MB log ile with an

I/O size of 256KB and multiple database writer/reader processes writing/reading a 10MB data ile with an I/O size

of 2KB. We conigure OLTP to initiate transactions at a high frequency to better match the high performance of

BAS.

Fig. 12(a) shows that FusionFS outperforms the second-ranked WineFS by up to 3.4×. This is because for 256KB

log writes, FusionFS uses dedicated-cache updates, which are likely to hit CPU caches, rather than lushing all

writes to BAS as other ile systems do, thus taking advantage of the high performance of CPU caches. For 2KB

database writes, FusionFS uses non-temporal updates to avoid the performance degradation typically associated
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with small I/O sizes. In addition, FusionFS achieves good scalability with the readers-writer range lock, which

ensures eicient concurrent access within the same ile.

5.5.2 TPC-C on SQLite. SQLite [51] is a lightweight database that stores data in a single B+-Tree ile, with other

auxiliary iles for logging. We run the OLTP benchmark TPC-C on SQLite in Write-Ahead-Logging (WAL) mode,

which contains three types of iles: the main database iles (~350MB), WAL iles (~4MB), and memory mapped

SHM iles (~32KB). The I/O size for write calls is 4KB.

Fig. 12(b) shows that FusionFS outperforms other ile systems by up to 2.0× in the TPC-C on SQLite workload

by adaptively choosing the most appropriate data update mechanism for the access pattern. While 4KB writes to

the main database iles can be oloaded to kernel threads, the lower locality due to the larger ile size compared

to Filebench OLTP leads FusionFS to use non-temporal updates for these writes. In contrast, the high access

frequency of the WAL iles allows FusionFS to use dedicated-cache updates to store the data CPU caches.

5.5.3 Kyoto Cabinet. Kyoto Cabinet (KC) [39] is a database library that stores the database in a single ile. KC

memory maps the irst 64 MB of the ile and frequently calls msync to ensure that updates to memory-mapped

data are persistent. KC also uses write system calls to append new records to the ile and uses WAL to provide

failure atomicity. We issue sequential SET requests to KC from a single thread for 30 seconds. The key size is 8B

and the value size is 1KB.

Fig. 12(c) shows that FusionFS outperforms other ile systems with a throughput of 184.6K ops/sec. This is

because other ile systems iterate over each page within the msync range and use a series of lush instructions

followed by a memory fence to ensure that the data is lushed to BAS. However, KC synchronizes the entire ile

even if only a small portion of the ile is modiied, which introduces unnecessary lushes and memory fences that

degrade performance. NOVA shows the second best performance because it uses generic_file_fsync without

lushing data to BAS. Unlike them, FusionFS uses in-place updates for the hot header and data, and batches full-ile

syncs within a second to reduce the overhead of frequent msync calls. In addition, FusionFS’s page fault-based

proiling mechanism can detect the hot data during mmap without any code changes to KC.

5.5.4 LMDB. Lightning Memory-Mapped Database Manager (LMDB) [52] is a B-Tree-based database library.

Unlike KC, LMDB memory maps the entire database, so that all data accesses directly load and store the mapped

memory region and ensures atomicity with copy-on-write. LMDB also synchronizes the entire ile during msync,

regardless of the mmap write range. We repeat the same workload as KC to evaluate the performance of FusionFS

with pure mmap. Fig. 12(c) shows that FusionFS outperforms other ile systems with a throughput of 352.9K

ops/sec. This is because FusionFS uses in-place updates for hot data and batches full-ile syncs within a second.

5.6 Emulated CXL-SSD Performance

We re-run the Fio workload in Section 5.3 to evaluate the performance of FusionFS on emulated CXL-SSDs.

Similar to existing work [3, 40, 42], we emulate CXL-SSDs using Optane PM on a remote NUMA node because

they are not yet in mass production and their access latency is comparable to the remote latency on a dual-socket

system. Previous studies [59, 65] also indicate that CXL-SSDs have 16KB access granularity. Therefore, when

lushing data from CPU caches to the emulated CXL-SSDs, if the lush size is not an integer multiple of the BAS

granularity, we adjust it to the nearest larger multiple. We then symbolically modify 1 byte for each cacheline

within the aligned region and revert back to ensure that the entire region is marked as dirty and lushed to

BAS. Based on previous experiments, FusionFS’s cached data is virtually immune to cache contention, so we

only consider write ampliication caused by explicit lushes and ignore write ampliication caused by random

cache evictions. To further validate the versatility of FusionFS, we test access granularities of 64B, 256B, and 4KB,

corresponding to DRAM, Optane PM, and SSD, respectively, in addition to 16KB.
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Fig. 13. Throughput, latency, and I/O amplification of evaluated file systems on emulated CXL-SSDs with diferent access

granularities.

Fig. 13 shows that FusionFS achieves optimal performance regardless of access granularity. This is because

FusionFS stores hot data in persistent CPU caches, protecting it from cache contention, and writes to the BAS

only when the data gets cold. ODINFS, on the other hand, eagerly lushes all data to PM. While this makes it

immune to random cache evictions, it will inevitably sufer from write ampliication if the access granularity is

larger than the write size (e.g., 16KB). For BAS with 64B access granularity (e.g., battery-backed memory), lush

instructions can be safely omitted because random cache evictions do not cause write ampliication. However,

avoiding cache contention still helps reduce data movement between caches and the BAS, thus saving scarce

BAS bandwidth. In addition, we ind that the increased latency of CXL has minimal impact on kernel ile systems

that require system calls.

6 Discussion and Related Work

To the best of our knowledge, this is the irst work to identify, characterize, and propose solutions to diferent

types of cache contention for BAS systems, and the irst to use L3_CAT to mitigate contention for persistent CPU

caches and address its challenges. We irst discuss the generality of our work and its applicability to other BAS

devices, persistent CPU cache implementations, and BAS systems. We then compare FusionFS to related work.

Applicability to other BAS devices and persistent CPU cache implementations. Our implementation

of FusionFS is based on Intel Optane PM and eADR, which is a type of BAS and its persistent CPU cache

implementation. Although Intel has discontinued its Optane product, research on it is still useful. There are two

main reasons for this. First, there is an obvious need for new storage technologies to bridge the gap between

DRAM and SSD [7, 69]. Other BAS products such as CXL-SSDs [49, 59] are promising solutions. Second, the

development of FusionFS is guided by the general byte-addressability and durability characteristics of BAS, rather

than being customized for a speciic BAS device. As discussed in Section 5.6, FusionFS achieves good performance

across BAS devices with diferent access granularities and latency characteristics, and avoiding cache contention

is still beneicial with matched access granularity.

Our indings can also be applied to other persistent CPU cache implementations. CXL 3.0 [10] introduces the

hardware-based Global Persistent Flush (GPF) to provide functionality similar to eADR. Battery-Backed Bufer [1]

uses batteries to make caches persistent. These alternatives also sufer from the same cache contention problems

as eADR.

Applicability to other BAS systems. The ideas of FusionFS can be applied to other types of BAS systems, such

as userspace ile systems, key-value stores, and indexes. For example, in userspace ile systems (e.g., HTMFS [60]),

ACM Trans. Arch. Code Optim.
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we can minimize cache pollution from cold data by choosing active-lush updates for cold data. Since lushes

cause HTM transactions to abort, we can ensure HTM compatibility by delaying lushes until transactions are

complete. In addition, we can use contention-aware cache allocation to protect cached data from cache contention.

The Exploration of Persistent CPU Caches. Researchers have been looking for ways to optimize BAS

systems with persistent CPU caches. Gugnani [18] proposes lock-free algorithms for linked lists and ring bufers

based on atomic CPU hardware primitives. NBTree [62, 64] is a lock-free persistent B+-Tree designed for eADR-

enabled platforms. HTMFS [60] and Spash [63] use HTM to simplify concurrency control and provide strong

consistency at low cost. Falcon [33] maintains a reusable log window in persistent CPU caches. In terms of cache

contention, Falcon [33] and Spash [63] selectively lush cold data to mitigate BAS-BAS contention. CacheKV [70]

redesigns LSM-Tree’s MemTables to optimize its write performance with persistent CPU caches, but it uses

unsupported Cache Pseudo-Locking without verifying its efectiveness and therefore cannot mitigate interfering

process contention. In contrast, FusionFS 1) mitigates various types of cache contention to use persistent CPU

caches as a dedicated storage medium, 2) uses L3_CAT to efectively mitigate interfering process contention instead

of unsupported Cache Pseudo-Locking, 3) optimizes memory mapping accesses through page fault-based proiling,

and 4) uses range locks for concurrency control instead of relying on HTM, which has security vulnerabilities

and is disabled by default [37].

7 Conclusions

Persistent CPU caches can mitigate the shortcomings of BAS in terms of data lushing and access granularity.

However, the shared nature of CPU caches can lead to cache contention, negating the beneits of caching and

even leading to write ampliication. In this paper, we identify, characterize, and propose solutions to persistent

CPU cache contention. We also propose FusionFS, a contention-resilient kernel ile system that uses persistent

CPU caches to redesign data update approaches. FusionFS employs an adaptive data update approach that

chooses the most efective mechanism based on ile access patterns during system calls and memory mapping

accesses. FusionFS also employs contention-aware cache allocation to mitigate various types of cache contention.

Performance results show that FusionFS outperforms existing ile systems and efectively mitigates various types

of cache contention.
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